Seasonal variation in the temperature response of leaf respiration in *Quercus rubra* at the

Black Rock Forest

K. L. GRIFFIN and C.Y. Xu, Columbia University, Lamont-Doherty Earth Observatory , 61 Route 9W, 6

Biology, Palisades, NY 10964

Leaf respiratory temperature responses of *Quercus rubra* were measured throughout the 2003-

growing season in a deciduous forest in northeastern USA, in the upper and lower portions of the

canopy at two sites with different soil water availability. Consequently, stand-level canopy foliar

carbon loss (R_{canopy}) was modeled for a virtual *Quercus rubra* monoculture in these two sites. The

base leaf respiration rate (R_0 , respiration at 10 °C) of Q. *rubra* was significantly affected by season,

site water availability, canopy height and their interactions. Upper canopy leaves generally had

higher R_0 than lower canopy leaves. At the drier site, a more significant seasonal pattern in R_0 was

observed, while at the more mesic site, a stronger canopy position effect was detected. By contrast,

the temperature coefficient (E_0 , the activation energy of respiration as a single reaction) was constant

 $(52.5 \pm 5 \text{ kJ mol-1})$. Leaf reducing monose could partially explain the seasonality in respiration (32%)

- 79%), and leaf nitrogen (N_{area}) was well correlated to the canopy position effect. R_{canopy} of Q. rubra

was first estimated by a "full distributed physiology model", which. integrates the effects of season,

site, and canopy position on R_0 . Sensitivity examination indicates that neglecting the season, site and

canopy height effects on leaf respiration resulted in up to a 130% error on the estimation of R_{canopy} ,

but canopy level model parameterizations could be simplified by assuming a constant E_0 (error <

5%). From June 8th to October 28th of 2003, the modeled R_{canopy} of the virtual Q. *rubra* monoculture

was 6.3 mol CO₂ m-2

ground, and 13.5 mol CO₂ m-2 ground, at the drier and the more mesic site

respectively. These results suggest that the temporal and spatial heterogeneities of R_0 need to be

considered in ecosystem models, but it is potentially predictable from well understood leaf

properties. Meanwhile, simplifications can be made in *Q. rubra* by assuming a constant temperature

coefficient (*E*₀, e.g. 52.5 kJ mol-1 in this study)