Organic Carbons in Soils from Black Rock Forest, Cornwall, N.Y.

By Woonji Lisa Paek

Barnard College
Department of Environmental Science

May 11, 1998

Table of Contents

List of Figures	ii
List of Tables	ii
Abstract	1
Introduction	2
Methods	3
Field Work	3
Soil Organic Analysis	5
Results	8
Discussion	9
Conclusion	16
Acknowledgments	18
References	19
Appendix	21

Charts

Chart 1. Depth and %Corg of soil samples with regression line.	1
Figures	
Figure 1. The carbon cycle in the atmosphere-plant-soil ecosystem.	6
Tables	
Table 1. Soil sample list.	8
Table 2. Percent organic carbon for soil samples.	8
Table 3. Organic carbon content of standards.	9
Table 4. ANOVA Single Factor: All sample test for significant difference in organic carbon content.	11
Table 5. ANOVA Single Factor: A horizon test for significant difference in organic carbon content.	12
Table 6. ANOVA Single Factor: B horizon test for significant difference in organization content.	anic 13
Table 7. ANOVA Single Factor: C horizon test for significant difference in organization content.	nic 14
Appendix	
Table A1. Sample Weights.	24
Table A2. Raw data from first run of samples.	26
Table A3. Raw data from second run of samples.	27
Table A4. Raw data for SLOSH standard.	29

Abstract

Soil from sample pits from Black Rock Forest was analyzed for organic carbon content. Pits were dug at various locations throughout the forest. Horizons in each pit were identified and soil was taken from each layer. Analysis was performed by weight loss on ignition method. The store of carbon in soils is a delicate reservoir that can be modified by land management practices. Through careful study, we can determine where and how much carbon is stored in the soil. As unwise and exploitative land use practices can reduce the intake and storage of carbon by soils, educated, informed use can enhance and perhaps increase the process.

Introduction

Soil is defined in <u>Soil and the Environment</u>, an <u>Introduction</u> by Alan Wild as "the loose material composed of weathered rock and other minerals, and also partly decayed organic matter, that covers large parts of the land surface of the Earth" (Wild, 1993).

How does soil work as part of an ecosystem? The soil is an essential part of the carbon cycle. In the course of natural cycling, CO₂ is taken from the atmosphere by autotrophic organisms through photosynthesis. Some of the carbon is incorporated into the soil by the plants as organic substances. The soil is also a source of carbon when decomposers release CO₂ into the atmosphere through oxidation of organic compounds.

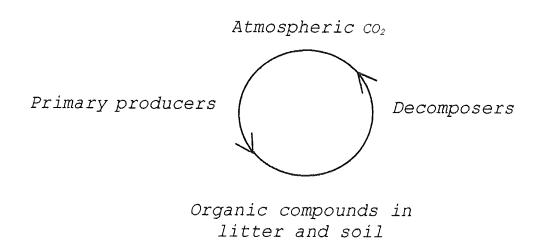


Figure 1. The carbon cycle in the atmosphere-plant-soil ecosystem (Wild, 1993).

The natural sequence of the carbon cycle is altered when carbon from anthropogenic sources is released into the environment. Deforestation turns primary

producers into a source, not sink, of carbon. Increase in land use also increases the flux of carbon from the soil to the atmosphere.

The soil serves as a reservoir that is not yet fully understood in the carbon cycle. According to measurements from the Mauna Loa Observatory in Hawaii, concentrations of CO₂ have increased significantly over the years (Wild, 1993). With the everincreasing use of fossil fuels and increased emissions, how will it affect global warming? How much of the carbon can and is taken into the soils?

The focus of the soil analysis will be the amount of organic matter in soil, the percentage of organic carbon in the soil's organic matter and comparison of carbon content between the different layers, or horizons

Methods

Field Work

Soil samples were collected during the summer of 1997 by Sarah Helm, a student working in the Pew Science Program. Pits were dug in the Cascade Brook watershed area of Black Rock Forest. The depths of soil horizons in each pit were recorded.

Samples were taken from the following layers: 1) litter, 2) 3-8 cm depth, including the roots, 3) 8-13 cm depth, 4) 18-23 cm depth, 5) 38-43 cm depth, and 6) 79-84 cm depth.

Soil was placed in zip loc plastic bags and labeled with appropriate date, location and horizon (Table 1). Samples were placed into refrigeration at approximately 8°C for storage.

Table 1. Soil sample list.

Pit numbers are given with location, date and volume of sampling, where available. Sample numbers are listed with their depth from surface.

Soil Sample List						
Pit BRF 17-001, near Glycerine	e Hollow Lookout on Carpenter					
08/01/97	·					
Sample# BRF 17-001-1	L	131 ml				
BRF 17-001-2	5 cm, A	131 ml				
BRF 17-001-3	13 cm, B1	131 ml				
BRF 17-001-4	23 cm, B2	131 ml				
BRF 17-001-5	46 cm, C top	131 ml				
BRF 17-001-6	76 cm, C bottom	131 ml				
Pit BRF 19-001						
08/15/97						
Sample# BRF 19-001-1	L					
BRF 19-001-2	5 cm, A					
BRF 19-001-3	25 cm, B					
BRF 19-001-4	48 cm, C					
Pit BRF 20-002						
Sample# BRF 20-002-1	L					
BRF 20-002-2	3 cm, A					
BRF 20-002-3	8 cm, B1					
BRF 20-002-4	20 cm, B2					
BRF 20-002-5	43 cm, C					
Pit BRF 20-003, Bottom of Gly	cerine Hollow.	•				
08/01/97						
Sample# BRF 20-003-1	L	131 ml				
BRF 20-003-2	8 cm, A	131 ml				
BRF 20-003-4	25 cm, B top	131 ml				
BRF 20-003-5	33 cm, B bottom	131 ml				
BRF 20-003-6	61 cm, C top	131 ml				
BRF 20-003-7	76 cm, C bottom	131 ml				
Pit BRF 20-004, Bottom of Gly	cerine Hollow.					
08/01/97						
Sample# BRF 20-004-1	L	131 ml				
BRF 20-004-2	10 cm, A	131 ml				
BRF 20-004-3	25 cm, B	131 ml				
BRF 20-004-4	51 cm, C top	131 ml				
BRF 20-004-5	91 cm, C bottom	131 ml				
Pit BRF 20-005						
08/15/97						
Sample# BRF 20-005-1	L					
BRF 20-005-2	8 cm, A					

BRF 20-005-3	30 cm, B	
BRF 20-005-4	53 cm, C	
Pit BRF 20-006		
Sample# BRF 20-006-1	L	
BRF 20-006-2	8 cm, A	
BRF 20-006-3	25 cm, B top	
BRF 20-006-4	33 cm, B bottom	
Pit BRF 20-007		
08/12/97		
Sample# BRF 20-007-1	L	
BRF 20-007-2	3 cm, A	
BRF 20-007-3	10 cm, B1	
BRF 20-007-4	23 cm, B2	
BRF 20-007-5	51 cm, C	
Pit BRF 20-008		
Sample# BRF 20-008-1	L	
BRF 20-008-2	3 cm, A	
BRF 20-008-3	13 cm, B1	
BRF 20-008-4	25 cm, B2	
BRF 20-008-5	51 cm, C	210 ml
Pit BRF 21-001, Go-Down Rd.		
07/23/97		
Sample# BRF 21-001-1	L	160 ml
BRF 21-001-2	5 cm, A	192 ml
BRF 21-001-3	10 cm, B?	152 ml
BRF 21-001-4	20 cm, B	160 ml
BRF 21-001-5	41 cm, C top	210 ml
BRF 21-001-6	81 cm, C middle	166 ml
BRF 21-001-7	122 cm, C bottom	75 ml

Soil Organic Analysis

Materials:

- aluminum foil
- crucibles
- tongs
- low temperature oven
- desiccator
- balance
- sieve (#10, 2mm)

- plastic zip-lock bagsmortar and pestle
- weighing paper
- analytical balance
- furnace
- glass vials

The methods used to analyze soil organic carbon content are based on those used in a senior thesis by Dan Farrell (<u>The Diversity and Species in a Managed Forest</u>, May 1997). Farrell based his methods on two texts, <u>Soils and the Environment: an Introduction</u>, Wild and <u>Soil sampling</u>, preparation, and analysis, Tan.

Plastic bags of samples were opened, covered with aluminum foil and left out to air dry for 24 hours. Samples were weighed in the bag after complete drying (Appendix A). The soil was then sieved to remove all twigs, stones and other debris larger than 2mm. The debris caught in the sieve was put into a separate bag and weighed (Appendix A). The sieved soil was then pulverized into a homogenous mixture with a mortar and pestle. The weight of a piece of weighing paper taken and recorded as P_I. An aliquot of approximately 1-2 g of the sieved soil was weighed and its weight was recorded as "S". Crucibles were washed, labeled, and dried in the oven. They were then cooled and weighed. Individual weights for each crucible were recorded as "Cr" Each sample "S" was placed into a crucible and the paper used to weigh the soil sample was reweighed. Weight was recorded as P_F. If P_F did not equal P_I, then a correction was applied to "S" (Appendix D). The actual weight of soil put into the crucible was noted as S_i. Crucibles with their samples were then placed into an oven at 100°C for one hour, then were cooled in a dessicator, after which the sample and crucible were weighed again. The final weight of the sample (S_f) was determined by subtracting the weight of its crucible (Cr). Moisture loss was calculated using the formula:

% moisture loss = $100(S_i-S_f)/S_i$

Crucibles were then placed into a furnace and combusted at 375°C for six hours. They were cooled in a dessicator, weighed and after correcting for crucible weight, the weight of the remaining soil sample was recorded as S_c. Loss on ignition (LOI) and fraction of loss on ignition (%LOI) of the organic matter in the soil was calculated using the formulae:

$$LOI = S_{f^*}S_c$$

% $LOI = 100[(S_{f^*}S_c)/S_f]$

Because organic carbon content is approximately 50% of the organic matter content (Tan, 1996, 223), percent of organic carbon content (%C_{ORG}) in the soil can be calculated with the formula:

$$%C_{ORG} = %LOI/2$$

After analysis, all samples were stored in labeled glass vials. Each sample from a horizon was analyzed in duplicate.

Results

Table 2. Percent organic carbon for soil samples. Raw data located in Table A2 and A3.

Sample #	DEPTH	RUN#1	RUN#2	AVERAGE	SD	SE
17-001-2	5	1.304	1.509		·	0.103
17-001-3	13	1.107	1.413	1.813	1	0.153
17-001-4	23	4.086	4.004	6.088	0.058	0.041
17-001-5	46	0.352	0.402	0.553	0.036	0.025
17-001-6	76	0.101	0.201	0.201	0.071	0.050
19-001-2	5	10.399	10.775	15,786	0.266	0.188
19-001-3	25	4.721	5.288	7.365	0.401	0.284
19-001-4	48	3.184	3.283	4.825	0.070	0.049
20-002-2	3	3.770	6.515	7.028	1.941	1.372
20-002-3	8	2.534	2.521	3.794	0.009	0.006
20-002-4	20	1.235	1.562	2.016	0.232	0.164
20-002-5	43	1.060	1.326	1.723	0.187	0.133
20-003-2	8	4.806	6.746	8.179	1.372	0.970
20-003-3	25	1.907	2.622	3.218	0.506	0.358
20-003-4	33	1.552	1.835	2.469	0.200	0.142
20-003-5	61	0.785	1.148	1.359	0.257	0.181
20-003-6	76	0.371	0.651	0.697	0.198	0.140
20-004-2	10	8.066	8.865	12.499	0.565	0.399
20-004-3	25	3.381	3.885	5.324	0.357	0.252
20-004-4	51	0.403	0.504	0.655	0.071	0.050
20-004-5	91	0.251	0.300	0.401	0.035	0.025
20-005-2	8	4.551	4.015	6.559	0.379	0.268
20-005-3	30	2.716	2.439	3.936	0.196	0.139
20-005-4	53	0.267	0.432	0.483	0.116	0.082
20-006-2	10	3.864	4.556	6.142	0.489	0.346
20-006-3	30	2.220	1.960	3.200	0.184	0.130
20-006-4	46	1.735	1.418	2.444	0.224	0.158
20-007-2	3	5.736	5.330	8.401	0.287	0.203
20-007-3	10	1.972	1.613	2.778	0.254	0.179
20-007-4	23	1.919	1.414	2.626	0.357	0.253
20-007-5	51	0.961	0.914	1.417	0.033	0.023
20-008-2	3	9.117	8.391	13.312	0.513	0.363
20-008-3	13	2.391	1.984	3.383	0.288	0.203
20-008-4	25	1.931	1.623	2.743	0.218	0.154
20-008-5	51	0.608	0.405	0.810	0.144	0.102
21-001-2	5	12.758	10.271	17.893	1.758	1.243
21-001-3	10	6.998	5.582	9.789	1.001	0.708
21-001-4	20	2.848	2.588	4.142	0.184	0.130
21-001-5	41	1.545	1.553	2.321	0.006	0.004
21-001-6	81	0.456	0.404	0.659	0.037	0.026
21-001-7	122	0.251	0.251	0.377	0.000	0.000

In soil analyses, as with any scientific experiment, a standard or a known is tested along with each sample. SLOSH, Standard Lamont Observatory Sediments from the Hudson, was used as the standard. Percent organic carbon for standard samples. are shown, along with average and standard deviation.

Table 3. Organic carbon content of standards. Raw data located in Table A3.

SLOSH	%Corg	SLOSH	%Corg	Average
RUN #1	2.905	RUN #26	3.067	2.916
RUN #2	3.001	RUN #27	3.061	
RUN #3	3.052	RUN #28	2.959	SD
RUN #4	3.103	RUN #29	2.902	0.277
RUN #5	3.204	RUN #30	2.964	•
RUN #6	3.157	RUN #31	2.599	SE
RUN #7	3,201	RUN #32	2.497	0.039
RUN #8	3.265	RUN #33	2.701	1
RUN #9	3.208	RUN #34	2.444	
RUN #10	2.554	RUN #35	2.352	1
RUN #11	2.965	RUN #36	2.696	
RUN #12	2.965	RUN #37	2.701	
RUN #13	2.902	RUN #38	2.795	
RUN #14	2.908	RUN #39	3.004	
RUN #15	2.911	RUN #40	3.007	
RUN #16	2,905	RUN #41	3.103	
RUN #17	2.809	RUN #42	3.150	
RUN #18	2.500	RUN #43	3.154	
RUN #19	2.605	RUN #44	3.201	
RUN #20	2.500	RUN #45	3.249	}
RUN #21	2.294	RUN #46	3.154	l
RUN #22	2.198	RUN #47	3.204	1
RUN #23	3.119	RUN #48	3.106	
RUN #24	3.112	RUN #49	3.160]
RUN #25	3.071	RUN #50	3.163	

Discussion

Visually, there was a difference in soils from different horizons. Generally, the greater the depth from the surface, the lighter and more clay-like the soil appeared. In these horizons, I expected less % moisture loss, LOI, %LOI and % C_{ORG} . Decomposition of litter on the forest floor enriches the uppermost layers of the soil with organic carbon and this enriching becomes more and more limited as the soil layers go deeper.

I expected differences between the same horizons of different pits only if the locations differed greatly in type of vegetation. The more vegetation there is at the site, the more litter. The more litter there is, the greater the amount of carbon in the soil's upper horizons.

Analysis of soil samples show that there is a strong correlation between horizon and soil organic carbon content (Chart 1). Generally the deeper the horizon is, the less the organic carbon content of that soil. A horizons had, in most samples, organic carbon content higher than that of B or C horizons. Organic carbon also decreased with increasing depth from the surface.

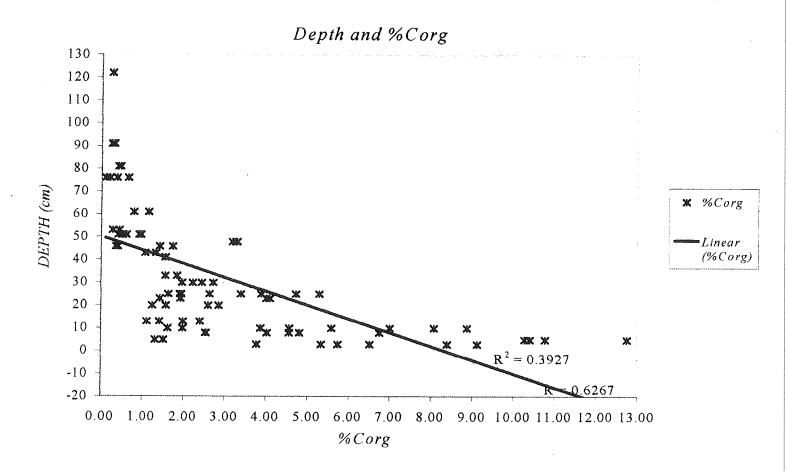


Chart 1. Depth and %Corg of soil samples with regression line.

Using one way analysis of variance (ANOVA), the obtained value of F of all sample tests was found to be less than the critical value of 1.686 (Table 1).

Table 4. ANOVA Single Factor: All sample test for significant difference in organic carbon content.

Amorro, Cimala Easter				
Anova: Single Factor	-			
SUMMARY	1			
	C-1	C1	1	17'
Groups	Count	Sum	Average	Variance
17-001-2	2.0000	2.8130	1.4065	0.0210
17-001-3	2.0000	2.5194	1.2597	0.0468
17-001-4	2.0000	8.0899	1	0.0033
17-001-5	2.0000	0.7538	0.3769	0.0013
17-001-6	2.0000	0.3020	0.1510	0.0051
19-001-2	2.0000	21.1737	10.5868	0.0708
19-001-3	2.0000	10.0095	5.0047	0.1610
19-001-4	2.0000	6.4665	3.2332	0.0049
20-002-2	2.0000	10.2850	5.1425	3.7657
20-002-3	2.0000	5.0548	2.5274	0.0001
20-002-4	2.0000	2.7971	1.3985	0.0538
20-002-5	2.0000	2.3860	1.1930	0.0351
20-003-2	2.0000	11.5524	5.7762	1.8811
20-003-3	2.0000	4.5294	2.2647	0.2559
20-003-4	2.0000	3.3866	1.6933	0.0401
20-003-5	2.0000	1.9336	0.9668	0.0658
20-003-6	2.0000	1.0225	0.5113	0.0393
20-004-2	2.0000	16,9317	8.4658	0.3191
20-004-3	2.0000	7.2666	3.6333	0.1272
20-004-4	2.0000	0.9063	0.4532	0.0051
20-004-5	2.0000	0.5511	0.2755	0.0012
20-005-2	2.0000	8.5662	4.2831	0.1437
20-005-3	2.0000	5.1552	2.5776	0.0384
20-005-4	2.0000	0.6993	0.3497	0.0135
20-006-2	2.0000	8.4194	4.2097	0.2396
20-006-3	2.0000	4.1796	2.0898	0.0338
20-006-4	2.0000	3.1531	1.5765	0.0502
20-007-2	2.0000	11.0660	5,5330	0.0825
20-007-3	2.0000	3.5846	1.7923	0.0644
20-007-4	2.0000	3.3333	1.6667	0.1275
20-007-5	2.0000	1.8743	0.9371	0.0011
20-007-3	2.0000	17.5078	8.7539	0.2637
20-008-2	2.0000	4.3744	2.1872	0.0828
20-008-3	2.0000	3.5541	1.7771	0.0325
ZU-UU0-4	2.0000	3.3341	1.///1	0.0473

20-008-5	2.0000	1.0128	0.5064	0.0206		
21-001-2	2,0000	23.0290		3.0911		
21-001-3	2.0000	12.5796	6.2898			
21-001-4	2,0000					
21-001-5	2.0000	3.0976		0.0000		
21-001-6	2.0000	0.8608	0.4304	0.0013		
21-001-7	2,0000	0.5020	0.2510	0.0000		
ANOVA						
Source of Variation	SS	df	MS	\overline{F}	P-value	F crit
Between Groups	653.1179	40.0000	16.3279	54.6883	0.0000	1.6856
Within Groups	12.2411	41.0000	0.2986			
Total	665.3590	81.0000				,

The null hypothesis is therefore rejected and therefore it can be concluded that there are significant differences in organic carbon content among the different horizons. ANOVAs were also performed on each group of samples from the same horizons. For A horizon samples, the obtained F value was less than the critical value and therefore the conclusion is that there are no sufficient reasons for differences among the samples (Table 5).

Table 5. ANOVA Single Factor: A horizon test for significant difference in organic carbon content.

Anova: Single Fac	tor, A horizon,	3-10 cm		
SUMMARY				
Groups	Count	Sum	Average	Variance
17-001-2	2.0000	2.8130	1.4065	0.0210
19-001-2	2.0000	21.1737	10.5868	0.0708
20-002-2	2.0000	10.2850	5.1425	3.7657
20-003-2	2,0000	11.5524	5.7762	1.8811
20-004-2	2.0000	16.9317	8.4658	0.3191
20-005-2	2.0000	8.5662	4.2831	0.1437
20-006-2	2.0000	8.4194	4.2097	0.2396
20-007-2	2.0000	11.0660	5.5330	0.0825
20-008-2	2.0000	17.5078	8.7539	0.2637
21-001-2	2.0000	23.0290	11.5145	3.0911

ANOVA						
Source of Variation	SS	df	MS	\overline{F}	P-value	F crit
Between Groups Within Groups	180.3056 9.8782	9.0000 10.0000	20.0340 0.9 878	20.2810	0.0000	3.0204
Total	190.1837	19.0000				

The same holds true for B horizon samples (Table 6). If the null hypothesis is retained for the B horizon sample results, we conclude that there are no significant differences. Therefore, among the various sampling locations, the amount of organic carbon did not vary greatly at the same horizon. This may be a result of all sites having very similar groundcover and litter. It may also indicate that the different groundcover and litter found within these sites do not greatly impact the organic carbon content of the topsoil and upper horizons.

Table 6. ANOVA Single Factor: B horizon test for significant difference in organic carbon content.

Anova: Single Facto	r, B horizons,	13-33 cm		
SUMMARY	Í			
Groups	Count	Sum	Average	Variance
17-001-3	2.0000	53.6975	26.8487	851.1068
17-001-4	2.0000	8.0899	4.0450	0.0033
19-001-3	2.0000	10.0095	5.0047	0.1610
20-002-3	2.0000	5.0548	2.5274	0.0001
20-002-4	2.0000	2.7971	1.3985	0.0538
20-003-3	2.0000	4.5294	2.2647	0.2559
20-003-4	2.0000	3.3866	1.6933	0.0401
20-004-3	2.0000	7.2666	3,6333	0.1272
20-005-3	2.0000	5.1552	2.5776	0.0384
20-006-3	2.0000	4.1796	2.0898	0.0338
20-006-4	2.0000	3.1531	1.5765	0.0502
20-007-3	2.0000	3.5846	1.7923	0.0644
20-007-4	2.0000	3.3333	1.6667	0.1275
20-008-3	2,0000	4.3744	2.1872	0.0828
20-008-4	2.0000	3.5541	1.7771	0.0475
21-001-3	2.0000	12.5796	6.2898	1.0020
21-001-4	2.0000	5.4359	2.7179	0.0337

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	1154.4000 853.2284	16.0000 17.0000	72.1500 50.1899		0.2327	2.2888
Total	2007.6284	33.0000				

Generally, the organic carbon content of the A sample was 2-5 times greater than the B sample. For C horizon samples, the obtained F value was greater than the critical value and therefore the conclusion is that there are differences among the samples (Table 7). C horizon contains soils that are classified as "parent material" and A and B horizons as "eluvial" and "illuvial" (White, 1989). With these definitions in mind, organic carbon content can be similar in the A and B horizons if we consider the movement from nutrient sources into the A horizon ("eluvial") which then washes down and collects in the B horizon ("illuvial"). By these processes, soils in different parts of the forest can have the same source of influx in the A and B horizons. Parent material lies deep beneath the reach of the nutrients washing downwards into the profile. The soil here is largely the product of weathering of the rock underneath (White, 1989) and will retain most of the characteristics of that rock. If different types of bedrock underlie the C horizons, then the organic carbon contents will differ as well.

Table 7. ANOVA Single Factor: C horizon test for significant difference in organic carbon content.

Anova: Single Fac	ctor, C horizon,4	1-122 cm		
SUMMARY				
Groups	Count	Sum	Average	Variance
17-001-5	2.0000	0.7538	0,3769	0.0013
17-001-6	2.0000	0,3020	0.1510	0.0051

Total	17.1712	27.0000				
Within Groups	0.1944	14.0000	0.0139			
Between Groups	16.9768	13.0000	1.3059	94.0294	0.0000	2.5073
Source of Variation	SS	df	MS	F	P-value	Fcrit
ANOVA						
21-001-7	2.0000	0.5020	0.2510	0.0000		
21-001-6	2.0000	0.8608	0.4304	0.0013		
21-001-5	2.0000	3.0976	1.5488	0.0000	Ì	
20-008-5	2.0000	1.0128	0.5064	0.0206		
20-007-5	2.0000	1.8743	0.9371	0.0011		ļ
20-005-4	2,0000	0.6993	0.3497	0.0135		
20-004-5	2.0000	0.5511	0.2755	0.0012	(
20-004-4	2,0000	0.9063	0.4532	0.0051		
20-003-6	2,0000	1.0225	0.5113	0.0393	{	
20-003-5	2,0000	1.9336	0.9668	0.0658		
20-002-5	2,0000	2.3860	1.1930	0.0351	-	{
19-001-4	2,0000	6.4665	3,2332	0.0049		

In terms of methods, there have been questions as to when soil should be sieved. Sieving was a faster way of sorting debris. The other alternative was sorting by hand using tweezers. This was both time consuming and subjective. In both processes, a stone larger than 2 mm was more easily picked out than a root hair larger than 2 mm. The sorting of debris was not error free either way. Soil aggregates were somewhat eliminated when soil was pulverized before sieving. But moisture within the particles caused them to clump into aggregates, even after pulverization with mortar and pestle. These aggregates can and should be part of the sieved soil that is used in analysis. Instead, the aggregates were sorted out in the sieve and become part of the debris. Some root hairs were not trapped in the sieve and fell into the portion of the sample to be tested. Crucibles could have lost more weight after heating in the furnace and oven with the soils in them. Some soil could have been lost during the transfer from the balance to the

crucible, or from the furnace or oven to the desiccator. These are all sources of systematic and random errors.

Conclusion

Results show that most of the organic carbon was located in the A and B horizons. These layers receive the products of decomposition of litter and runoff from precipitation. They are also the most directly affected by land management use. Any actions taken above ground will directly affect the carbon storage underground. Logging, agriculture, land development all upset the layers within the profile. Soils in general are stores of approximately twice the amount of carbon present in the atmosphere as carbon dioxide (Wild, 1993). Soils are a key in the carbon cycle for the uptake of carbon. Cultivated lands, pastures for livestock, deforestation and other changes in land use can all lead to the release of carbon to the atmosphere. More of the organic matter is exposed to oxygen, soil moisture and temperature can increase and this can accelerate the respiratory release of carbon (Lal, 1995). Any addition of carbon into the atmosphere can tip the delicate balance of carbon cycling in the ecosystem.

There are many factors that affect the rate of carbon storage of carbon in soils. While it is important to know how much is stored where, that knowledge is secondary to other information. What are the consequences of land use practices, not just in forests, but everywhere? Will it decrease the uptake of carbon by the soil? Will it release carbon and cause a potential sink to become a source? How can we maintain and enhance the

natural role of the soil? The key here is an informed and educated modification in the approaches to handling our resources to benefit both our needs and the needs of the environment.

Acknowledgements

Stephanie Pfirman, Jim Simpson, and Martin Stute provided advice and encouragement. Peter Bower introduced me to his Pew Scholar project, which extended into this thesis. Sarah Helm provided the soil samples and performed the fieldwork.

Barnard College Security allowed me access to the Environmental Science laboratories at all hours of the night. Special thanks to the many others, too many to list, who supported me in my struggle to finish my thesis.

References

Butcher, Samuel S., et. al. (1992) *Global Biogeochemical Cycles*, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto; Academic Press.

Farrell, Dan (1997) The Diversity and Species Composition of Woody Plant Species in a Managed Forest, Undergraduate Senior Thesis, Columbia University

Harrison, A.F., et. al. (1990) Nutrient Cycling in Terrestrial Ecosystems, London, New York; Elsevier Applied Science.

Hesse, P.R. (1971) A Textbook of Soil Chemical Analysis, New York; Chemical Publishing Co., Inc.

Helm, Sarah L. (1997) Field notes, Undergraduate research, Pew Science Program, Barnard College

Lal, R., et. al., (1998) Management of Carbon Sequestration in Soil, Boca Raton, New York; CRC Press.

Lal, R., et. al. (1995) Soils and Global Change, Boca Raton, New York; CRC Press.

Remezov, N.P. and P.S. Pogrebnyak, (1965) Forest Soil Science, Jerusalem; Israel Program for Scientific Translations.

Tan, Kim H. (1996) Soil sampling, preparation, and analysis, New York; Marcel Dekker, Inc.

Tate, Robert L. III, (1987) Soil Organic Matter, Biological and Ecological Effects, New York, Chichester, Brisbane, Toronto, Singapore; John Wiley & Sons

White, R.E. (1987) *Introduction to the Principles and Practice of Soil Science*, 2nd. Editon, Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne; Blackwell Scientific Publications.

Wild, Alan (1993) Soils and the Environment, Cambridge, New York, Melbourne; Cambridge University Press

Welkowitz, Joan., et. al., (1988) Introductory Statistics for the Behavioral Sciences, San Diego, New York, Chicago, Austin, Washington, D.C., London, Sydney, Tokyo, Toronto; Harcourt Brace Jovanovich, Publishers.

Winegardner, Duane L. (1995) An Introduction to Soils for Environmental Professionals, Boca Raton, New York, London, Tokyo; Lewis Publishers

TABLE A1. SAMPLE WEIGHTS

Whole soil samples weighed in the bag, after complete drying at room temperature. Debris collected with #10 (2mm) sieve and then weighed.

17-001-2 17-001-3	89.129 09.137	DEBRIS WEIGHT (g) 108.557 45.366
17-001-3	09.137	
11.002		
		20.596
1, 332 .	,	24.386
1, 0010	15:200	39.534
1,0010	9.376	7.108
12 001 -	4.605	11.027
15 001 0	1.664	17.810
13 001	87.277	85.752
20 001 0	4.911	5.751
20 002 2	5.781	16.318
20 002 0	8.910	33.010
25 552 .		28.231
20 002 5	4.213	36.452
20 000 2	33.228	43.937
20 003 5	48.028	24.133
20 000 .	62.967	54,335
20.005.5	79,388	78,985
20 000 0	8,608	5.032
1200012	8.17	19.733
20 00, 0	32.054	54.359
1 20 001 1	29.786	50,44
40 00 10	04.324	20,766
20 000 2	50.308	108.410
20 002 2	35.129	36.265
120 000 .	36,360	8.952
1 20 000 2	37.000	8.952
20 000 0	35.147	13.944
, 20000.	15.699	61.522
2000, 2	74,205	24.833
2000.	22.448	60.159
20007	30.050	22.046
20 00.	51.628	9.846
20 000 2	70.062	10.365
1	34.498	14.641
1 20 000 .	56.942	22.886
20 000 0	94.046	21.611
21 001 2	95.877	16.011
21 001 5	141.564	26.406
21 001 .	212.028	59.070
21 001 0	193.785	57.991
21 001 0	107.006	36.534

Table A2. Raw data from first run of samples.

																	~1					~			- 9		4		· ·	7 4	9 6	7 (٠ ,		7
%Corg	1.304	1.107	4.086	0.352	0.101	10.399	4.721	3 184	1 124	1.134	0///0	450.7	1.255	1.060	4.806	1.907	1.552	0.785	0.371	8.066	3.381	0.403	0.251	4.551	2.716	0.267	3 864	2.55	1 735	2.7	3.730	1.972	1.919	196.0	9.117
% IO1%	2.608	2.213	8.172	0.704	0.201	20.797	9 442	898 9	3,200	207.7	1.541	5.008	2.469	2.121	9.613	3.814	3.103	1.571	0.742	16.133	6.762	908.0	0.502	9 102	5 432	0.535	7777	4.440	2.470	0.470	11.4/2	5.945	3.838	1.921	18.234
	0.026	0.022	080.0	0.007	0.002			0.000	40.0	0.021	0.065	0.045	0.024	0.020	0.072	0.032	0.027	0.015	0.008	0.136	990.0	0 008	0 005	0.073	0.049	0.00	0.00	0.000	0.042	0.033	0.113	0.039	0.038	0.019	0.159
%moist. loss	0.598	0.401								7.028	13.627	10.664	2.605	5.416	24.648	15.594	12.738	4.595	-7.800	15.446	2.204	0 700	0300	10 397	0710	5 172	10 031	10.71	3.113	4.805	1.303	0.603	0.702	0.603	12.713
Sc (g) 9	0.971	0.972	668 0	0 988	0 000	0 735	0.73	140.0	0.794	0.905	0.797	0.843	0.948	0.923	0.677	0.807	0.843	0.940	1.070	0.707	0 910	0.085	000	0.770	0.142	0.023	0.230	0.012	0.904	0.918	0.872	0.950	0.952	0.970	0.713
Sc + Cr (g)	-	13.762	12 233	14 537	13 993	12.021	12.931	107.61	13.932	13.845	13.587	12.179	14.498	15.852	13.655	13.627	13.897	13.135	13.265	13.845	15.839	12.057	12 912	12.510	13.320	12.188	17.044	15.115	14.982	14.169	15.449	14.987	13.387	15.964	13.505
Sf(g)		0 094	0.079	0.995	0000	0000	0.928	0.932	0.848	0.926	0.862	0.888	0.972	0.943	0.749	0.839	0.870	0.955	1 078	0.843	0.076	0.77.0	0.993	0.997							0.985	0.989	0.660	0.989	0.872
Sf + (r (9)	13 937	13.784	12.73	14 544	12.0051	13.333	15.124	13.289	13.986	13.866	13.652	12.224	14.522	15.872	13.727	13.659	13.924	13.15	13 273	13 981	15.005	15.505	13.972	12.618	15.595	12.237	15.649	15.183	15.024	14.202	15.562	15.026	13.425		13
(a)		12 700	11 224	12 540	12.042	13.001	12.196	12.357	13.138	12.940	12.790	11.336	13.550	14.929	12.978	12.820	13 054	12 195	12 195	12 120	13.130	14.929	12.979	17871	12.791	11.335	14.714	14.303	14.078	13.251	14.577	14.037	12,435	14.994	
3	\bot	000				1.001			0.995	966.0	866.0	0.994	866.0				0 997	100	1 000	1.000	0.997	0.998	1.000	30.	0.995	0.999	0.986	0.988	0.997	0.999	0.998				
Df (a)	0 4 4 0	0.440	7,77	4/5.0	0.400	0.387	0.396	0.392	0.458	0.371	0.391	0.470	0.380	0.455	0.455	0.03	0.410	0.452	0.267	0.00	675.0	0.388	0.466	0.365			0.477	0.411	0.390	0.372					
W. C. Callet (ex)	Weight (E)	1.004	1.000	1.000	0.999	1.002	1.002	1.003	1.002	1.001	1.003	1001	1 003	1 001	1 002	1.002	200.1	1.002	1.004	1.003	1.002	136.	1.003	1.002	1.002	1.002	1.003	1.002	1.002	1.002	· ·		-	nd house	
(1)		0.447	0.457	0.5/5	0.464	0.386	0.394	0.385	0.451	0.366	0 386	0.263	0.375	0.275	101.0	0.447	0.10	0.414	0.447	0.304	0.368	0.385	0.463	0.363	0.441	0.381	0.460	0.397							
	Sample	17-001-2	17-001-3	17-001-4	17-001-5	12-001-6	19-001-2	19-001-3	19-001-4	20-001-3	200-02	20-02	20-02-0	200-02	200-02	7-500-07	20000	20-003-4	20-003-3	0-500-07	20-004-2	20-004-3	20-004-4	20-004-5	20-005-2	20-005-3	20-005-4	20-006-2	20-006-3	20-006-4	200-02	2 / 20 - 02	20.00-02	+ / 00-07 • 20 00 0	C-700-07

	0.037 2.963
0.037	7.00.0
4.104 0.037	
_	0.921
7/7.71	14.471
0.983	0.958
12.319	14.508
11.336	13.550
0.999	0.999
1.002 0.465	0.391
1,002	1.002
20-008-3 0.462	
	20-008-4 0.388

Table A3. Raw data from second run of samples.

Sample	Pi (g)	Weight (g)	Pf(g)	S	Cr (g)	Sf+Cr(g)	Sf(g)	Sc + Cr (g)	Sc (g)	%moist. loss	rol	%TOI	%Corg
17-001-2	0.447	1.002	0.452	0.997	12.979	13.973	0.994	13.943	0.964	0.301	0.030	3.018	1.509
17-001-3	0.396	1.001	0.400	0.997	13.731	14.722	0.991	14.694	0.963	0.602	0.028	2.825	1.413
17-001-4	0.399	1.002	0.402	0.999	14.916	15.890	0.974	15.812	968.0	2.503	0.078	8.008	4.004
17-001-5	0.442	1.002	0.445	0.999	14.714	15.709	0.995	15.701	0.987	0.400	0.008	0.804	0.402
17-001-6	0.454	1.000	0.454	1.000	14.303	15.296	0.993	15.292	0.989	0.700	0.004	0.403	0.201
19-001-2	0.375	1.002	0.378	0.999	14.076	15.018	0.942	14.815	0.739	5.706	0.203	21.550	10.775
19-001-3	0.465	1.020	0.465	1.020	13.252	14.188	0.936	14.089	0.837	8.235		10.577	5.288
19-001-4	0.389		0.394	0.995	14.577	15.430	0.853	15.374	0.797	14.271		6.565	3.283
20-002-2	0.469	1.001	0.474	966.0	13.754	14.675	0.921	14.555	0.801	7.530	0.120	13.029	6.515
20-002-3	0.378		0.383	0.997	13.819	14.771	0.952	14.723	0.904	4.514	0.048	5.042	2.521
20-002-4	0.466	1.002	0.469	0.999	12.929	13.921	0.992	13.890	0.961	0.701	0.031	3.125	1.562
20-002-5	0.383		0.389	0.997	12.791	13.734	0.943	13.709	0.918	5.416		2.651	1.326
20-003-2	0.382		0.389	0.995	12.939	13.695	0.756	13.593	0.654	24.020		13.492	6.746
20-003-3	0.382	1.004	0.387	0.999	13.549	14.407	0.858	14.362	0.813	14.114	0.045	5.245	2.622
20-003-4	0.440		0.447	966.0	13.000	13.872	0.872	13.840	0.840	12.450	0.032	3.670	1.835
20-003-5	0.380	1.002	0.386	966.0	13.550	14.508	0.958	14.486	0.936	3.815	0.022	2.296	1.148
20-003-6	0.380	1.002	0.391	0.991	13.001	13.922	0.921	13.910	0.909	7.064	_	1.303	0.651
20-004-2	0.447	1.002	0.460	0.989	12.197	13.043	0.846	12.893	969.0	14.459	0.150	17.730	8.865
20-004-3	0.396	1.003	0.404	0.995	12.359	13.337	0.978	13.261	0.902	1.709	0.076	7.771	3.885
20-004-4	0.400	1.002	0.407	0.995	13.139	14.132	0.993	14.122	0.983	0.201	0.010	1.007	0.504
20-004-5	0.451	1.003	0.452	1.002	12.979	13.978	0.999	13.972	0.993	0.299	0.006	0.601	0.300

,																			
4.015				1.960															
8.030	4.878	0.864	9.112	3.919	2.836	10.660	3.226	2.828	1.827	16.782	3.967	3.246	0.810	20.543	11.164	5.176	3.106	0.809	0.502
0.064	0.044	0.008	0.080	0.037	0.027	0.105	0.032	0.028	0.018	0.146	0.039	0.031	800.0	0.159	0.094	0.047	0.030	0.008	0.005
18.756	8.704	7.121	11.936	5.221	4.322	1.204	0.601	0.702	1.303	12.651	1.404	4.500	1.101	22.367	15.462	9.018	3.012	0.905	0.300
0.733	0.858	816.0	0.798	0.907	0.925	0.880	0.960	0.962	0.967	0.724	0.944	0.924	0.980	0.615	0.748	0.861	0.936	0.981	0.992
14.465	15.774	14.672	15.728	13.886	13.746	14.698	14.989	15.644	13.908	14.456	15.859	15.639	15.284	14.693	14.000	15.440	14.973	15.974	14.746
0.797	0.902	0.926	0.878	0.944	0.952	0.985	0.992	066.0	0.985	0.870	0.983	0.955	0.988	0.774	0.842	0.908	996.0	0.989	0.997
14.529	15.818	14.680	15.808	13.923	13.773	14.803	15.021	15.672	13.926	14.602	15.898	15.670	15.292	14.852	14.094	15.487	15.003	15.982	14.751
13.732	14.916	13.754	14.930	12.979	12.821	13.818	14.029	14.682	12.941	13.732	14.915	14.715	14.304	14.078	13.252	14.579	14.037	14.993	13.754
	0.988	0.997	0.997	966.0	0.995	0.997	0.998	0.997	866.0	966.0	0.997	1.000	0.999	0.997	966.0	0.998	966.0	866.0	1.000
0.485	0.393	0.394	0.458	0.403	0.414	0.448	0.453	0.388	0.467	0.387	0.390	0.387	0.449	0.414	0.410	0.450	0.461	0.388	0.455
1.002	1.003	1.002	1.003	1.002	1.000	1.001	1.004	1.003	1.003	1.000	1.00.1	1.002	1.002	1.001	1.001	1.002	1.001	1.003	1.003
0.464	0.378	0.389	0.452	0.397	0.409	0.444	0.447	0.382	0.462	0.383	0.386	0.385	0.446	0.410	0.405	0.446	0.456	0.383	0.452
20-002-2	20-005-3	20-005-4	20-006-2	20-006-3	20-006-4	20-007-2	20-007-3	20-007-4	20-007-5	20-008-2	20-008-3	20-008-4	20-008-5	21-001-2	21-001-3	21-001-4	21-001-5	21-001-6	21-001-7

Table A4. Raw data for SLOSH standard.

Sample	Pi (g)	Weight (g)	Pf(g)	Si	Cr (g)	Sf+Cr(g)	Sf(g)	Sc + Cr (g)	Sc (g)	%moist. loss	LOI	107%	%Corg
SLOSH 1	0.460	1.005	0.464	1.001	12.435	13.416	0.981	13.359	0.924	1.998	0.057	5.810	2.905
	0.388	1.005	0.391	1.002	14.994	15.977	0.983	15.918	0.924	1.896	0.059	6.002	3.001
SLOSH 3	0.381	1.005	0.384	1.002	13.754	14.737	0.983	14.677	0.923	1.896	0.060	6.104	3.052
	0.386	1.005	0.389	1.002	14.930	15.913	0.983	15.852	0.922	1.896	0.061	6.205	3.103
SLOSH 5	0.440	1.005	0.444	1.001	12.979	13.962	0.983	13.899	0.920	1.798	0.063	6.406	3.204
SLOSH 6	0.411	1.003	0.414	1.000	12.820	13.802	0.982	13.740	0.920	1.800	0.062	6.314	3.157
	0.406	1.006	0.409	1.003	13.818	14.802	0,984	14.739	0.921	1.894	0.063	6.402	3.201
	0.455	1.003	0.458	1.000	14.029	15.009	0.980	14.945	0.916	2.000	0.064	6.531	3.265
SLOSH 9	0.461	1.006	0.464	1.003	14.681	15.663	0.982	15.600	0.919	2.094	0.063	6.415	3.208
SLOSH 10	0.462	1.002	0.463	1.001	12.939	13.918	0.979	13.868	0.929	2.198	0.050	5.107	2.554
SLOSH 11	0.469	1.004	0.473	1.000	12.792	13.770	0.978	13.712	0.920	2.200	0.058	5.930	2.965
SLOSH 12	0.375	1.003	0.378	1.000	11.336	12.314	0.978	12.256	0.920	2.200	0.058	5.930	2.965
	0.382	1.006	0.385	1.003	13.550	14.532	0.982	14.475	0.925	2.094	0.057	5.804	2.902
****	0.378	1.005	0.382	1.001	13.002	13.982	0.980	13.925	0.923	2.098	0.057	5.816	2.908
	0.446	1.003	0.450	0.999	12.196	13.175	0.979	13.118	0.922	2.002	0.057	5.822	2.911
SLOSH 16	0.395	1.005	0.399	1.001	12.359	13.340	0.981	13.283	0.924	1.998	0.057	5.810	2.905
	0.399	1.004	0.402	1.001	13.139	14.118	0.979	14.063	0.924	2.198	0.055	5.618	2.809
	0.463	1.002	0.466	0.999	12.979	13.959	0.980	13.910	0.931	1.902	0.049	5.000	2.500
	0.455	1.005	0.458	1.002	13.733	14.712	0.979	14.661	0.928	2.295	0.051	5.209	2.605
	0.389	1.005	0.393	1.001	14.916	15.896	0.980	15.847	0.931	2.098	0.049	5.000	2.500
	0.466	1.006	0.469	1.003	14.715	15.696	0.981	15.651	0.936	2.193	0.045	4.587	2.294
	0.381	1.003	0.384	1.000	14.304	15.282	0.978	15.239	0.935	2.200	0.043	4.397	2.198
	0.380	1.004	0.385	0.999	14.078	15.056	0.978	14.995	0.917	2.102	0.061	6.237	3.119
	0.382	1.005	0.386	1.00.1	13.251	14.231	0.980	14.170	0.919	2.098	0.061	6.224	3.112
	0.446	1.004	0.450	1.000	14.578	15.555	0.977	15.495	0.917	2.300	090.0	6.141	3.071
	0.390	1.004	0.393	1.001	14.037	15.015	0.978	14.955	0.918	2.298	0.060	6.135	3.067
	0.407	1.004	0.411	1.000	12.434	13.414	0.980	13.354	0.920	2.000	0.060	6.122	3.061
	0.448	1.005	0.451	1.002	14.994	15.974	0.980	15.916	0.922	2.196	0.058	5.918	2.959
	0.449	1.006	0.453	1.002	13.753	14.735	0.982	14.678	0.925	1.996	0.057	5.804	2.902
	0.382	1.004	0.385	1.001	14.929	15.909	0.980	15.851	0.922	2.088	0.058	5.928	2.964
	0.458	1.005	0.461	1.002	12.978	13.959	0.981	13.908	0.930	2.096	0.051	5.199	2.599
3	0.386	1.002	0.388	1.000		13,415	0.981	13.366	0.932	1.900	0.049	4.995	2.497
SLOSH 33	0.385	1.005	0.389	1.001	13.818	14.799	0.981	14.746	0.928	1.998	0.053	5.403	2.701

			١										
SLOSH 34	0.381	1.005			14.028	15.010	0 982	14 962	0.034	1 808	0 040	4 000	* * * C
SLOSH 35	0.443	1.005			14.680	15 658		15.612	0.027	1.676	0.040	4.000	7.444
SLOSH 36	0.408	1 006			12 701	12 774		10.01	0.932	2.200	0.040	4. /05	7977
SI OSH 37	907.0	1,000			12.721	13.7.4		15.721	0.930	1.602	0.053	5.392	2.696
05 1130 13	0.40	1.004			11.335	12,316		12.263	0.928	1.802	0.053	5.403	2.701
SLUSH 38	0.449	1.006			13.550	14.534		14.479	0.929	1.698	0.055	5 589	2 705
SLOSH 39	0.455	1.006			13.002	13.984		13.925	0.923	1.800	0.059	6 008	3 004
SLOSH 40	0.384	1.005	0.390	0.999	12.197	13.178	0.981	13.119	0.922	1.802	0.059	6.014	3.007
SLOSH 41	0.457	1.005		-	12.358	13.341		13.280	0.922	1.602	0.061	6 205	3 103
SLOSH 42	0.392	1.005			13.138	14.122		14.060	0.922	1.600	0.062	6 301	3 150
SLOSH 43	0.379	1.005			13.732	14.715		14.653	0.921	1.700	0.062	6 307	3 154
SLOSH 44	0.388	1.004			14.916	15.900		15.837	0.921	1,600	0.063	6 402	3 201
SLOSH 45	0.439	1.006		,	14.715	15.700		15.636	0.921	1.697	0.064	6 497	3 249
SLOSH 46	0.415	1.004		_	14.303	15.286		15.224	0.921	1,602	0.062	6 307	3.154
SLOSH 47	0.408	1.005		1.000	14.078	15.061		14.998	0.60	1 700	0.063	6.200	3 204
SLOSH 48	0.453	1.005	0.459	0.999	13.251	14.233		14.172	0 921	1 702	0.062	6212	2 106
SLOSH 49	0.443	1.003		0.998	14.578	15.559		15.497	0 919	1 703	0.00	6 320	2.160
SLOSH 50	0.387	1.003	0.393	0.997	14.037	15.017	- }	14.955	0.918	1.705	0.062	6.327	3.163